Part Number Hot Search : 
BCM2705 CP20100S SPX43204 F7343 CS291N14 SS428 ADM3202 IPB80N06
Product Description
Full Text Search
 

To Download W25Q80BWSNIG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  w25q80bw publication release date: january 26, 2011 - 1 - preliminary - revision a 1.8v 8m-bit serial flash memory with dual and quad spi
w25q80bw - 2 - table of contents 1. general description ............................................................................................................... 5 2. features .............................................................................................................................. ......... 5 3. pin configuration soic 150 / 208-mil ................................................................................... 6 4. pad configuration wson 6x5-mm, uson 2x3-mm ............................................................. 6 5. pin description soic 150/208-mil, wson 6x5-mm & uson 2x3-mm ................................. 6 5.1 package types ..................................................................................................................... 7 5.2 chip select (/cs) .................................................................................................................. 7 5.3 serial data input, output and ios (di, do and io0, io1, io2, io3) .................................... 7 5.4 write protect (/wp) ............................................................................................................... 7 5.5 hold (/hold) ..................................................................................................................... 7 5.6 serial clock (clk) ................................................................................................................ 7 6. block diagram ............................................................................................................................ 8 7. functional description ......................................................................................................... 9 7.1 spi operations ............................................................................................................... 9 7.1.1 standard spi instructions ....................................................................................................... 9 7.1.2 dual spi instructions .............................................................................................................. 9 7.1.3 quad spi instructions ............................................................................................................. 9 7.1.4 hold function ......................................................................................................................... 9 7.2 write protection ....................................................................................................... 10 7.2.1 write protect features .......................................................................................................... 10 8. control and status registers ........................................................................................ 11 8.1 status register .......................................................................................................... 11 8.1.1 busy ............................................................................................................................... ..... 11 8.1.2 write enable latch (wel) .................................................................................................... 11 8.1.3 block protect bits (bp2, bp1, bp0) ...................................................................................... 11 8.1.4 top/bottom block protect (tb) ............................................................................................. 11 8.1.5 sector/block protect (sec) .................................................................................................. 11 8.1.6 complement protect (cmp) ................................................................................................. 12 8.1.7 status register protect (srp1, srp0) ................................................................................. 12 8.1.8 erase/program suspend status (sus) ................................................................................ 12 8.1.9 security register lock bits (lb3, lb2, lb1, lb0) ................................................................ 12 8.1.10 quad enable (qe) .............................................................................................................. 13 8.1.11 status register memory protection (cmp = 0) ................................................................... 14 8.1.12 status register memory protection (cmp = 1) ................................................................... 15 8.2 instructions ................................................................................................................. 16 8.2.1 manufacturer and devi ce identification ................................................................................ 16 8.2.2 instruction set table 1 (erase, program instructions) .......................................................... 17
w25q80bw 8.2.3 instruction set table 2 (read instructions) .......................................................................... 18 publication release date: january 26, 2011 - 3 - preliminary - revision a 8.2.4 instruction set table 3 (id, security instructions) ................................................................. 19 8.2.5 write enable (06h) ................................................................................................................ 20 8.2.6 write enable for volatile status register (50h) .................................................................... 20 8.2.7 write disable (04h) ............................................................................................................... 21 8.2.8 read status register-1 (05h) and read status register-2 (35h) ......................................... 22 8.2.9 write status register (01h) .................................................................................................. 22 8.2.10 read data (03h) ................................................................................................................. 24 8.2.11 fast read (0bh) ................................................................................................................. 25 8.2.12 fast read dual output (3bh) ............................................................................................. 26 8.2.13 fast read quad output (6bh) ............................................................................................ 27 8.2.14 fast read dual i/o (bbh) ................................................................................................... 28 8.2.15 fast read quad i/o (ebh) ................................................................................................. 30 8.2.16 word read quad i/o (e7h) ................................................................................................ 32 8.2.17 octal word read quad i/o (e3h) ....................................................................................... 34 8.2.18 set burst with wrap (77h) .................................................................................................. 36 8.2.19 continuous read mode bits (m7-0) ................................................................................... 37 8.2.20 continuous read mode reset (ffh or ffffh) .................................................................. 37 8.2.21 page program (02h) ........................................................................................................... 38 8.2.22 quad input page program (32h) ........................................................................................ 39 8.2.23 sector erase (20h) ............................................................................................................. 40 8.2.24 32kb block erase (52h) ..................................................................................................... 41 8.2.25 64kb block erase (d8h) ..................................................................................................... 42 8.2.26 chip erase (c7h / 60h) ....................................................................................................... 43 8.2.27 erase / program suspend (75h) ......................................................................................... 44 8.2.28 erase / program resume (7ah) ......................................................................................... 45 8.2.29 power-down (b9h) .............................................................................................................. 46 8.2.30 release power-down / device id (abh) ............................................................................. 47 8.2.31 read manufacturer / device id (90h) ................................................................................. 49 8.2.32 read manufacturer / device id dual i/o (92h) ................................................................... 50 8.2.33 read manufacturer / device id quad i/o (94h) .................................................................. 51 8.2.34 read unique id number (4bh) ........................................................................................... 52 8.2.35 read jedec id (9fh) ........................................................................................................ 53 8.2.36 erase security registers (44h) ........................................................................................... 54 8.2.37 program security registers (42h) ...................................................................................... 55 8.2.38 read security registers (48h) ............................................................................................ 56 9. electrical characteristics .............................................................................................. 57 9.1 absolute maximum ratings ................................................................................................ 57 9.2 operating ranges .............................................................................................................. 57 9.3 power-up timing and write inhibit threshold .................................................................... 58
w25q80bw 9.4 dc electrical characteristics .............................................................................................. 59 - 4 - 9.5 ac measurement conditions ............................................................................................. 60 9.6 ac electrical characteristics .............................................................................................. 61 9.7 ac electrical characteristics (cont?d) ................................................................................. 62 9.8 serial output timing ........................................................................................................... 63 9.9 serial input timing .............................................................................................................. 63 9.10 hold timing ........................................................................................................................ 63 10. package specification .......................................................................................................... 64 10.1 8-pin soic 150-mil (package code sn) ........................................................................... 64 10.2 8-pin soic 208-mil (package code ss) ........................................................................... 65 10.3 8-pad wson 6x5-mm (package code zp) ....................................................................... 66 10.4 8-pad uson 2x3-mm (package code ux) ....................................................................... 68 11. ordering information .......................................................................................................... 69 11.1 valid part numbers and top side marking ........................................................................ 70 12. revision history ...................................................................................................................... 71
w25q80bw publication release date: january 26, 2011 - 5 - preliminary - revision a 1. general description the w25q80bw (8m-bit) serial flash memory prov ides a storage solution for systems with limited space, pins and power. the 25q series offers flexibility and performance well beyond ordinary serial flash devices. they are ideal for code shadowing to ram, executing code dire ctly from dual/quad spi (xip) and storing voice, text and dat a. the device operates on a single 1. 65v to 1.95v power supply with current consumption as low as 4ma active and 1a for power-down. all devices are offered in space- saving packages. the w25q80bw array is organized into 4,096 progra mmable pages of 256-bytes each. up to 256 bytes can be programmed at a time. pages can be erased in groups of 16 (4kb sector erase), groups of 128 (32kb block erase), groups of 256 (64kb block erase) or the entire chip (chip erase). the w25q80bw has 256 erasable sectors and 16 erasable blocks respecti vely. the small 4kb sectors allow for greater flexibility in applications that require data and parameter storage. (see figure 2.) the w25q80bw supports the standard serial peri pheral interface (spi), and a high performance dual/quad output as well as dual/quad i/o spi: serial clock, chip select, serial data i/o0 (di), i/o1 (do), i/o2 (/wp), and i/o3 (/hold). spi clock frequencies of up to 80mhz are supported allowing equivalent clock rates of 160mhz (80mhz x 2) for dual i/o and 320mhz (80mhz x 4) for quad i/o when using the fast read dual/quad i/o instructions . these transfer rates can outperform standard asynchronous 8 and 16-bit parallel flash memories. the continuous read mode allows for efficient memory access with as few as 8-clocks of instru ction-overhead to read a 24-bit address, allowing true xip (execute in place) operation. a hold pin, write protect pin and programmable write protection, with top, bottom or complement array control, provide further control flexibility. additionally, the device supports jedec standard manufacturer and device identification with a 64-bit unique serial number. 2. features ? family of spiflash memories ? w25q80bw: 8m-bit/1m-byte (1,048,576) ? 256-byte per programmable page ? standard spi: clk, /cs, di, do, /wp, /hold ? dual spi: clk, /cs, io 0 , io 1 , /wp, /hold ? quad spi: clk, /cs, io 0 , io 1 , io 2 , io 3 ? highest performance serial flash ? 80mhz dual/quad spi clocks ? 160/320mhz equivalent dual/quad spi ? 40mb/s continuous data transfer rate ? up to 6x that of ordinary serial flash ? more than 100,000 erase/program cycles ? more than 20-year data retention ? efficient ?continuous read mode? ? low instruction overhead ? continuous read with 8/16/32/64-byte wrap ? as few as 8 clocks to address memory ? allows true xip (execute in place) operation ? outperforms x16 parallel flash ? low power, wide temperature range ? single 1.65v to 1.95v supply ? 4ma active current, <1a power-down current ? -40c to +85c operating range ? flexible architecture with 4kb sectors ? uniform sector erase (4k-bytes) ? uniform block erase (32k and 64k-bytes) ? program one to 256 bytes ? erase/program suspend & resume ? advanced security features ? software and hardware write-protect ? top/bottom, 4kb complement array protection ? lock-down and otp array protection ? 64-bit unique serial number for each device ? 4x256-byte security registers with otp locks ? volatile & non-volatile status register bits ? space efficient packaging ? 8-pin soic 150 (1) /208-mil ? 8-pad wson 6x5-mm, uson 2x3-mm ? contact winbond for kgd and other options note 1: soic-8 150mil is a special order pack age, please contact winbond for ordering information.
w25q80bw - 6 - 3. pin configuration soic 150 / 208-mil figure 1a. w25q80bw pin assignments, 8-pin soic 150 / 208-mil (package code sn & ss) 4. pad configuration wson 6x5-mm, uson 2x3-mm figure 1b. w25q80bw pad assignments, 8-pad wson 6x5-mm, uson 2x3-mm (package code zp & ux) 5. pin description soic 150/208-mil, wson 6x5-mm & uson 2x3-mm pin no. pin name i/o function 1 /cs i chip select input 2 do (io1) i/o data output (data input output 1)* 1 3 /wp (io2) i/o write protect input ( data input output 2)* 2 4 gnd ground 5 di (io0) i/o data input (data input output 0)* 1 6 clk i serial clock input 7 /hold (io3) i/o hold input (data input output 3)* 2 8 vcc power supply *1 io0 and io1 are used for standard and dual spi instructions *2 io0 ? io3 are used for quad spi instructions
w25q80bw publication release date: january 26, 2011 - 7 - preliminary - revision a 5.1 package types w25q80bw is offered in an 8-pin plastic 150-mil or 208-mil width soic (package code sn & ss), 6x5- mm wson (package code zp) and 2x3-mm uson ( package code ux) as shown in figure 1a and 1b respectively. package diagrams and dimensions are illustrated at the end of this datasheet. 5.2 chip select (/cs) the spi chip select (/cs) pin enables and disables device operation. when /cs is high the device is deselected and the serial data output (do, or io0, io1, io2, io3) pins are at high impedance. when deselected, the devices power consum ption will be at standby levels unless an internal erase, program or write status register cycl e is in progress. when /cs is brought low the device will be selected, power consumption will increase to active levels and inst ructions can be written to and data read from the device. after power-up, /cs must transition from high to low befor e a new instruction will be accepted. the /cs input must track the vcc supply level at power-up (see ?write protection? and figure 37). if needed a pull-up resister on /cs can be used to accomplish this. 5.3 serial data input, output and ios (di, do and io0, io1, io2, io3) the w25q80bw supports standard spi, dual spi and quad spi operation. standard spi instructions use the unidirectional di (input) pin to serially write instructions, addr esses or data to the device on the rising edge of the serial clock (clk) input pin. standard spi also uses the unidirectional do (output) to read data or status from the dev ice on the falling edge of clk. dual and quad spi instructions use the bidirectional io pins to serially write instructions, addresses or data to the device on the rising edge of clk and read dat a or status from the device on the falling edge of clk. quad spi instructions require the non-volatile q uad enable bit (qe) in status register-2 to be set. when qe=1, the /wp pin becomes io2 and /hold pin becomes io3. 5.4 write protect (/wp) the write protect (/wp) pin can be used to prevent the status register from being written. used in conjunction with the status register?s block prot ect (cmp, sec, tb, bp2, bp1 and bp0) bits and status register protect (srp) bits, a portion as small as a 4kb sector or the entire memory array can be hardware protected. the /wp pin is ac tive low. when the qe bit of status register-2 is set for quad i/o, the /wp pin function is not available since this pin is used for io2. see figure 1a-c for the pin configuration of quad i/o operation. 5.5 hold (/hold) the /hold pin allows the device to be paused while it is actively selected. when /hold is brought low, while /cs is low, the do pin will be at high impedance and signals on the di and clk pins will be ignored (don?t care). when /hold is brought high, device operation can resume. the /hold function can be useful when multiple devices are sharing the same spi signals. the /hold pin is active low. when the qe bit of status register-2 is set for quad i/o, the /hold pin function is not available since this pin is used for io3. see figure 1a-b for the pi n configuration of quad i/o operation. 5.6 serial clock (clk) the spi serial clock input (clk) pin provides the timing for serial input and output operations. ("see spi operations")
w25q80bw - 8 - 6. block diagram figure 2. w25q80bw serial fl ash memory block diagram 00ff00h 00ffffh ? block 0 (64kb) ? 000000h 0000ffh ? ? ? 3ff00h 3ffffh ? block 3 (64kb) ? 30000h 300ffh 4ff00h 4ffffh ? block 4 (64kb) ? 40000h 400ffh ? ? ? 7ff00h 7ffffh ? block 7 (64kb) ? 70000h 700ffh 8ff00h 8ffffh ? block 8 (64kb) ? 80000h 800ffh ? ? ? fff00h fffffh ? block 15 (64kb) ? f0000h f00ffh 003000h 0030ffh 002000h 0020ffh 001000h 0010ffh 000000h 0000ffh column decode and 256-byte page buffer beginning page address ending page address w25q80bw spi command & control logic byte address latch / counter status register write control logic page address latch / counter do (io 1 ) di (io 0 ) /cs clk /hold (io 3 ) /wp (io 2 ) high voltage generators xx0f00h xx0fffh ? sector 0 (4kb) ? xx0000h xx00ffh xx1f00h xx1fffh ? sector 1 (4kb) ? xx1000h xx10ffh xx2f00h xx2fffh ? sector 2 (4kb) ? xx2000h xx20ffh ? ? ? xxdf00h xxdfffh ? sector 13 (4kb) ? xxd000h xxd0ffh xxef00h xxefffh ? sector 14 (4kb) ? xxe000h xxe0ffh xxff00h xxffffh ? sector 15 (4kb) ? xxf000h xxf0ffh block segmentation data security register 3 - 0 write protect logic and row decode 00ff00h 00ffffh ? block 0 (64kb) ? 000000h 0000ffh ? ? ? 3ff00h 3ffffh ? block 3 (64kb) ? 30000h 300ffh 4ff00h 4ffffh ? block 4 (64kb) ? 40000h 400ffh ? ? ? 7ff00h 7ffffh ? block 7 (64kb) ? 70000h 700ffh 8ff00h 8ffffh ? block 8 (64kb) ? 80000h 800ffh ? ? ? fff00h fffffh ? block 15 (64kb) ? f0000h f00ffh 003000h 0030ffh 002000h 0020ffh 001000h 0010ffh 000000h 0000ffh column decode and 256-byte page buffer beginning page address ending page address w25q80bw spi command & control logic byte address latch / counter status register write control logic page address latch / counter do (io 1 ) di (io 0 ) /cs clk /hold (io 3 ) /wp (io 2 ) high voltage generators xx0f00h xx0fffh ? sector 0 (4kb) ? xx0000h xx00ffh xx1f00h xx1fffh ? sector 1 (4kb) ? xx1000h xx10ffh xx2f00h xx2fffh ? sector 2 (4kb) ? xx2000h xx20ffh ? ? ? xxdf00h xxdfffh ? sector 13 (4kb) ? xxd000h xxd0ffh xxef00h xxefffh ? sector 14 (4kb) ? xxe000h xxe0ffh xxff00h xxffffh ? sector 15 (4kb) ? xxf000h xxf0ffh block segmentation data security register 3 - 0 write protect logic and row decode
w25q80bw publication release date: january 26, 2011 - 9 - preliminary - revision a 7. functional description 7.1 spi operations 7.1.1 standard spi instructions the w25q80bw is accessed through an spi compatible bus consisting of four signals: serial clock (clk), chip select (/cs), serial data input (di) and serial data ou tput (do). standard spi instructions use the di input pin to serially write instructions, addresses or dat a to the device on the rising edge of clk. the do output pin is used to read data or status from the device on the falling edge clk. spi bus operation mode 0 (0,0) and 3 (1,1) are s upported. the primary difference between mode 0 and mode 3 concerns the normal state of the clk signal when the spi bus master is in standby and data is not being transferred to the serial flash. for mode 0, the clk signal is normally low on the falling and rising edges of /cs. for mode 3, the clk signal is normally high on the falling and rising edges of /cs. 7.1.2 dual spi instructions the w25q80bw supports dual spi operation when usi ng the ?fast read dual output (3bh)? and ?fast read dual i/o (bbh)? instructions. these instructions allow data to be transferred to or from the device at two to three times the rate of ordinary serial flash devices. the dual spi read instructions are ideal for quickly downloading code to ram upon power-up (code-s hadowing) or for executing non-speed-critical code directly from the spi bus (x ip). when using dual spi instruct ions, the di and do pins become bidirectional i/o pins: io0 and io1. 7.1.3 quad spi instructions the w25q80bw supports quad spi operation when usi ng the ?fast read quad output (6bh)?, ?fast read quad i/o (ebh)?, ?word read quad i/o (e7h)? and ?octal word read quad i/o (e3h)? instructions. these instructions allow data to be transferred to or fr om the device six to eight times the rate of ordinary serial flash. the quad read instructions offer a significant improvement in continuous and random access transfer rates allowing fast code-shadowing to ra m or execution directly from the spi bus (xip). when using quad spi instructions the di and do pi ns become bidirectional io0 and io1, and the /wp and /hold pins become io2 and io3 respectively. quad spi instructions require the non-volatile quad enable bit (qe) in status register-2 to be set. 7.1.4 hold function for standard spi and dual spi operations, the /hol d signal allows the w25q80bw operation to be paused while it is actively selected (when /cs is low). the /hold function may be useful in cases where the spi data and clock signals are shared with other devices. for example, consider if the page buffer was only partially written when a priority interrupt requires use of the spi bus. in this case the /hold function can save the state of t he instruction and the data in the buffer so programming can resume where it left off once the bus is available again. t he /hold function is only available for standard spi and dual spi operation, not during quad spi. to initiate a /hold condition, the device must be selected with /cs low. a /hold condition will activate on the falling edge of the /hold signal if the clk signal is already low. if the clk is not already low the /hold condition will activate after the next falling edge of clk. the /hold condition will terminate on the
w25q80bw rising edge of the /hold signal if the clk signal is already lo w. if the clk is not already low the /hold condition will terminate after the next falling edge of clk. during a /hold condition, the serial data output (do) is high impedance, and serial data input (di) and serial clock (clk) are ignored. the chip select (/cs) signal should be kept acti ve low for the full duration of the /hold operation to avoid resetting the internal logic state of the device. - 10 - 7.2 write protection applications that use non-volatile memory must take into consideration the possibility of noise and other adverse system conditions that ma y compromise data integrity. to address this concern, the w25q80bw provides several means to protect the data from inadvertent writes. 7.2.1 write protect features ? device resets when vcc is below threshold ? time delay write disable after power-up ? write enable/disable instructions and automat ic write disable after erase or program ? software and hardware (/wp pin) write protection using status register ? write protection using power-down instruction ? lock down write protection until next power-up ? one time program (otp) write protection * * note: this feature is available upon special order. please contact winbond for details. upon power-up or at power-down, the w25q80bw will ma intain a reset condition while vcc is below the threshold value of v wi , (see power-up timing and voltage levels and figure 37). while reset, all operations are disabled and no instructions are re cognized. during power-up and after the vcc voltage exceeds v wi , all program and erase related instructions are further disabled for a time delay of t puw . this includes the write enable, page program, sector eras e, block erase, chip erase and the write status register instructions. note that the chip select pi n (/cs) must track the vcc supply level at power-up until the vcc-min level and t vsl time delay is reached. if needed a pull-up resister on /cs can be used to accomplish this. after power-up the device is automatically placed in a write-disabled state with the status register write enable latch (wel) set to a 0. a write enable inst ruction must be issued before a page program, sector erase, block erase, chip erase or write status r egister instruction will be accepted. after completing a program, erase or write instruction the write enabl e latch (wel) is automatically cleared to a write- disabled state of 0. software controlled write protection is facilitated using the write stat us register instruction and setting the status register protect (srp0, srp1) and bl ock protect (cmp, sec,tb, bp2, bp1 and bp0) bits. these settings allow a portion as small as 4kb sector or the entire memory array to be configured as read only. used in conjunction with the write protect (/wp) pin, changes to the status register can be enabled or disabled under hardware control. see status register section for further information. additionally, the power-down instruction offers an extra level of write protection as all instructions are ignored except for the releas e power-down instruction.
w25q80bw publication release date: january 26, 2011 - 11 - preliminary - revision a 8. control and status registers the read status register-1 and stat us register-2 instructions can be used to provide status on the availability of the flash memory array, if the dev ice is write enabled or dis abled, the state of write protection, quad spi setting, security register lo ck status and erase/program suspend status. the write status register instruction can be used to configure the device write protection features, quad spi setting and security register otp lock. write access to the st atus register is controlled by the state of the non- volatile status register protect bits (srp0, srp1), the write enable instruction, and during standard/dual spi operations, the /wp pin. 8.1 status register 8.1.1 busy busy is a read only bit in the status register (s0) t hat is set to a 1 state w hen the device is executing a page program, quad page program, sector erase, block erase, chip erase, write status register or erase/program security register in struction. during this time the dev ice will ignore further instructions except for the read status register and erase/program suspend instruction (see t w , t pp , t se , t be , and t ce in ac characteristics). when the program, erase or write status/security r egister instruction has completed, the busy bit will be cleared to a 0 state indi cating the device is ready for further instructions. 8.1.2 write enable latch (wel) write enable latch (wel) is a read only bit in the status register (s1) that is set to 1 after executing a write enable instruction. the wel status bit is cleared to 0 when the device is write disabled. a write disable state occurs upon power-up or after any of the following instructions: write disable, page program, quad page program, sector erase, block erase, chip erase, write status register, erase security register and program security register. 8.1.3 block protect bits (bp2, bp1, bp0) the block protect bits (bp2, bp1, bp0 ) are non-volatile read/write bits in the status register (s4, s3, and s2) that provide write protection c ontrol and status. block protect bits can be set using the write status register instruction (see t w in ac characteristics). all, none or a portion of the memory array can be protected from program and erase instructions (see status register memory protection table). the factory default setting for the block protection bits is 0, none of the array protected. 8.1.4 top/bottom block protect (tb) the non-volatile top/bottom bit (tb) controls if the block protect bits (bp2, bp1, bp0) protect from the top (tb=0) or the bottom (tb=1) of the array as show n in the status register memory protection table. the factory default setting is tb=0. the tb bit can be set with the write status register instruction depending on the state of the srp0, srp1 and wel bits. 8.1.5 sector/block protect (sec) the non-volatile sector/block protect bit (sec) controls if the block protect bi ts (bp2, bp1, bp0) protect either 4kb sectors (sec=1) or 64kb blocks (sec=0) in the top (tb=0) or the bottom (tb=1) of the array as shown in the status register memory protection table. the default setting is sec=0.
w25q80bw - 12 - 8.1.6 complement protect (cmp) the complement protect bit (cmp) is a non-volatile read/ write bit in the status register (s14). it is used in conjunction with sec, tb, bp2, bp1 and bp0 bits to prov ide more flexibility for the array protection. once cmp is set to 1, previous array protection se t by sec, tb, bp2, bp1 and bp0 will be reversed. for instance, when cmp=0, a top 4kb sector can be prot ected while the rest of the array is not; when cmp=1, the top 4kb sector will become unprotected wh ile the rest of the array become read-only. please refer to the status register memory protecti on table for details. the default setting is cmp=0. 8.1.7 status register protect (srp1, srp0) the status register protect bits (srp1 and srp0) are non- volatile read/write bits in the status register (s8 and s7). the srp bits control the method of write protection: software protection, hardware protection, power supply lock-down or one time programmable (otp) protection. srp1 srp0 /wp status register description 0 0 x software protection /wp pin has no control. the stat us register can be written to after a write enable instruction, wel=1. [factory default] 0 1 0 hardware protected when /wp pin is low the status register locked and can not be written to. 0 1 1 hardware unprotected when /wp pin is high the status register is unlocked and can be written to after a write e nable instruction, wel=1. 1 0 x power supply lock-down status register is protect ed and can not be written to again until the next power-down, power-up cycle. (1) 1 1 x one time program (2) status register is permanently protected and can not be written to. notes: 1. when srp1, srp0 = (1, 0), a power-down, powe r-up cycle will change srp1, srp0 to (0, 0) state. 2. this feature is available upon special order. please contact winbond for details. 8.1.8 erase/program suspend status (sus) the suspend status bit is a read only bit in the status register (s15) that is set to 1 after executing a erase/program suspend (75h) instruction. the sus stat us bit is cleared to 0 by erase/program resume (7ah) instruction as well as a power-down, power-up cycle. 8.1.9 security register lock bits (lb3, lb2, lb1, lb0) the security register lock bits (lb3, lb2, lb1, lb 0) are non-volatile one time program (otp) bits in status register (s13, s12, s11, s 10) that provide the write protect control and status to the security registers. the default state of lb3-0 is 0, security registers are unlocked. lb3-0 can be set to 1 individually using the write status register instruction. lb3-0 are one time programmable (otp), once it?s set to 1, the corresponding 256-byte secu rity register will become read-only permanently.
w25q80bw publication release date: january 26, 2011 - 13 - preliminary - revision a 8.1.10 quad enable (qe) the quad enable (qe) bit is a non-volatile read/write bit in the status register (s 9) that allows quad spi operation. when the qe bit is set to a 0 state (factory default), the /wp pin and /hold are enabled. when the qe bit is set to a 1, the quad io2 and io 3 pins are enabled, and /wp and /hold functions are disabled. warning: if the /wp or /hold pins are tied directly to the power supply or ground during standard spi or dual spi operation, the qe bit should never be set to a 1. s7 s6 s5 s4 s3 s2 s1 s0 srp0 sec tb bp2 bp1 bp 0 wel busy status register protect 0 (non-volatile) sector protect (non-volatile) top/bottom protect (non-volatile) block protect bits (non-volatile) write enable latch erase/write in progress s7 s6 s5 s4 s3 s2 s1 s0 srp0 sec tb bp2 bp1 bp 0 wel busy status register protect 0 (non-volatile) sector protect (non-volatile) top/bottom protect (non-volatile) block protect bits (non-volatile) write enable latch erase/write in progress figure 3a. status register-1 s15 s14 s13 s12 s11 s10 s9 s8 sus cmp lb3 lb2 lb1 lb0 qe srp1 suspend status complement protect (non-volatile) security register lock bits (non-volatile otp) quad enable (non-volatile) status register protect 1 ( non-volatile ) s15 s14 s13 s12 s11 s10 s9 s8 sus cmp lb3 lb2 lb1 lb0 qe srp1 suspend status complement protect (non-volatile) security register lock bits (non-volatile otp) quad enable (non-volatile) status register protect 1 ( non-volatile ) figure 3b. status register-2
w25q80bw - 14 - 8.1.11 status register memory protection (cmp = 0) status register (1) w25q80bw (8m-bit) memory protection (2) sec tb bp2 bp1 bp0 block(s) addresses density portion x x 0 0 0 none none none none 0 0 0 0 1 15 0f0000h ? 0fffffh 64kb upper 1/16 0 0 0 1 0 14 and 15 0e0000h ? 0fffffh 128kb upper 1/8 0 0 0 1 1 12 thru 15 0c0000h ? 0fffffh 256kb upper 1/4 0 0 1 0 0 8 thru 15 080000h ? 0fffffh 512kb upper 1/2 0 1 0 0 1 0 000000h ? 00ffffh 64kb lower 1/16 0 1 0 1 0 0 and 1 000000h ? 01ffffh 128kb lower 1/8 0 1 0 1 1 0 thru 3 000000h ? 03ffffh 256kb lower 1/4 0 1 1 0 0 0 thru 7 000000h ? 07ffffh 512kb lower 1/2 0 x 1 0 1 0 thru 15 000000h ? 0fffffh 1mb all 0 x 1 1 x 0 thru 15 000000h ? 0fffffh 1mb all 1 0 0 0 1 15 0ff000h ? 0fffffh 4kb upper 1/256 1 0 0 1 0 15 0fe000h ? 0fffffh 8kb upper 1/128 1 0 0 1 1 15 0fc000h ? 0fffffh 16kb upper 1/64 1 0 1 0 x 15 0f8000h ? 0fffffh 32kb upper 1/32 1 1 0 0 1 0 000000h ? 000fffh 4kb lower 1/256 1 1 0 1 0 0 000000h ? 001fffh 8kb lower 1/128 1 1 0 1 1 0 000000h ? 003fffh 16kb lower 1/64 1 1 1 0 x 0 000000h ? 007fffh 32kb lower 1/32 1 x 1 1 1 0 thru 15 000000h ? 0fffffh 1mb all notes: 1. x = don?t care 2. if any erase or program command specifies a memory region that contains pr otected data portion, this command will be ignored.
w25q80bw publication release date: january 26, 2011 - 15 - preliminary - revision a 8 .1.12 status register memory protection (cmp = 1) status register (1) w25q80bw (8m-bit) memory protection (2) sec tb bp2 bp1 bp0 block(s) addresses density portion x x 0 0 0 0 thru 15 000000h ? 0fffffh 1mb all 0 0 0 0 1 0 thru 14 000000h ? 0effffh 960kb lower 15/16 0 0 0 1 0 0 thru 13 000000h ? 0dffffh 896kb lower 7/8 0 0 0 1 1 0 thru 11 000000h ? 0bffffh 768kb lower 3/4 0 0 1 0 0 0 thru 7 000000h ? 07ffffh 512kb lower 1/2 0 1 0 0 1 1 thru 15 010000h ? 0fffffh 960kb upper 15/16 0 1 0 1 0 2 thru 15 020000h ? 0fffffh 896kb upper 7/8 0 1 0 1 1 4 thru 15 040000h ? 0fffffh 768kb upper 3/4 0 1 1 0 0 8 thru 15 080000h ? 0fffffh 512kb upper 1/2 0 x 1 0 1 none none none none 0 x 1 1 x none none none none 1 0 0 0 1 0 thru 15 000000h ? 0fefffh 1,020kb lower 255/256 1 0 0 1 0 0 thru 15 000000h ? 0fdfffh 1,016kb lower 127/128 1 0 0 1 1 0 thru 15 000000h ? 0fbfffh 1,008kb lower 63/64 1 0 1 0 x 0 thru 15 000000h ? 0f7fffh 992kb lower 31/32 1 1 0 0 1 0 thru 15 001000h ? 0fffffh 1,020kb upper 255/256 1 1 0 1 0 0 thru 15 002000h ? 0fffffh 1,016kb upper 127/128 1 1 0 1 1 0 thru 15 004000h ? 0fffffh 1,008kb upper 63/64 1 1 1 0 x 0 thru 15 008000h ? 0fffffh 992kb upper 31/32 1 x 1 1 1 none none none none notes: 1. x = don?t care 2. if any erase or program command specifies a memory region that contains pr otected data portion, this command will be ignored.
w25q80bw - 16 - 8.2 instructions the instruction set of the w25q80bw consists of thirty four basic instructions that are fully controlled through the spi bus (see instruction set table1-3). inst ructions are initiated with the falling edge of chip select (/cs). the first byte of data clocked into the di input provides the instruction code. data on the di input is sampled on the rising edge of clock with most significant bit (msb) first. instructions vary in length from a single byte to several bytes and ma y be followed by address bytes, data bytes, dummy bytes (don?t care), and in some cases, a combination. instructions are completed with the rising edge of edge /cs. clock relative timing diagram s for each instruction are included in figures 4 through 36. all read instructions can be completed after any clocked bit. however, all instructions that write, program or erase must complete on a byte boundary (/cs driven high after a full 8-bits have been clocked) otherwise the instruction w ill be ignored. this feature further pr otects the device from inadvertent writes. additionally, while the memory is being progra mmed or erased, or when the status register is being written, all instructions exc ept for read status register will be ignored until the program or erase cycle has completed. 8.2.1 manufacturer and device identification manufacturer id (mf7-mf0) winbond serial flash efh device id (id7-id0) (id15-id0) instruction abh, 90h, 92h, 94h 9fh w25q80bw 13h 5014h
w25q80bw publication release date: january 26, 2011 - 17 - preliminary - revision a 8.2.2 instruction set table 1 (erase, program instructions) (1) instruction name byte 1 (code) byte 2 byte 3 byte 4 byte 5 byte 6 write enable 06h write enable for volatile status register 50h write disable 04h read status register-1 05h (s7?s0) (2) read status register-2 35h (s15?s8) (2) write status register 01h s7?s0 s15-s8 page program 02h a23?a16 a15?a8 a7?a0 d7?d0 quad page program 32h a23?a16 a15?a8 a7?a0 d7?d0, ? (3) sector erase (4kb) 20h a23?a16 a15?a8 a7?a0 block erase (32kb) 52h a23?a16 a15?a8 a7?a0 block erase (64kb) d8h a23?a16 a15?a8 a7?a0 chip erase c7h/60h erase / program suspend 75h erase / program resume 7ah power-down b9h continuous read mode reset (4) ffh ffh notes: 1. data bytes are shifted with most significant bit first. byte fields with data in parenthesis ?()? indicate data being read from the devic e on the do pin. 2. the status register content s will repeat continuously until /c s terminates the instruction. 3. quad page program input data: io0 = d4, d0, ?? io1 = d5, d1, ?? io2 = d6, d2, ?? io3 = d7, d3, ?? 4. this instruction is recommended w hen using the dual or quad ?continuous read mode? feature. see section 8.2.19 & 8.2.20 for more information.
w25q80bw - 18 - 8.2.3 instruction set table 2 (read instructions) instruction name byte 1 (code) byte 2 byte 3 byte 4 byte 5 byte 6 read data 03h a23-a16 a15-a8 a7-a0 (d7-d0) fast read 0bh a23-a16 a15-a8 a7-a0 dummy (d7-d0) fast read dual output 3bh a23-a16 a15-a8 a7-a0 dummy (d7-d0, ?) (1) fast read quad output 6bh a23-a16 a15-a8 a7-a0 dummy (d7-d0, ?) (3) fast read dual i/o bbh a23-a8 (2) a7-a0, m7-m0 (2) (d7-d0, ?) (1) fast read quad i/o ebh a23-a0, m7-m0 (4) (x,x,x,x, d7-d0, ?) (5) (d7-d0, ?) (3) word read quad i/o (7) e7h a23-a0, m7-m0 (4) (x,x, d7-d0, ?) (6) (d7-d0, ?) (3) octal word read quad i/o (8) e3h a23-a0, m7-m0 (4) (d7-d0, ?) (3) set burst with wrap 77h xxxxxx, w6-w4 (4) notes: 1. dual output data io0 = (d6, d4, d2, d0) io1 = (d7, d5, d3, d1) 2. dual input address io0 = a22, a20, a18, a16, a14, a12, a 10, a8 a6, a4, a2, a0, m6, m4, m2, m0 io1 = a23, a21, a19, a17, a15, a13, a 11, a9 a7, a5, a3, a1, m7, m5, m3, m1 3. quad output data io0 = (d4, d0, ?..) io1 = (d5, d1, ?..) io2 = (d6, d2, ?..) io3 = (d7, d3, ?..) 4. quad input address set burst with wrap input io0 = a20, a16, a12, a8, a4, a0, m4, m0 io0 = x, x, x, x, x, x, w4, x io1 = a21, a17, a13, a9, a5, a1, m5, m1 io1 = x, x, x, x, x, x, w5, x io2 = a22, a18, a14, a10, a6, a2, m6, m2 io2 = x, x, x, x, x, x, w6 x , io3 = a23, a19, a15, a11, a7, a3, m7, m3 io3 = x, x, x, x, x, x, x, x 5. fast read quad i/o data io0 = (x, x, x, x, d4, d0, ?..) io1 = (x, x, x, x, d5, d1, ?..) io2 = (x, x, x, x, d6, d2, ?..) io3 = (x, x, x, x, d7, d3, ?..) 6. word read quad i/o data io0 = (x, x, d4, d0, ?..) io1 = (x, x, d5, d1, ?..) io2 = (x, x, d6, d2, ?..) io3 = (x, x, d7, d3, ?..) 7. the lowest address bit must be 0. ( a0 = 0 ) 8. the lowest 4 address bits must be 0. ( a0, a1, a2, a3 = 0 )
w25q80bw publication release date: january 26, 2011 - 19 - preliminary - revision a 8.2.4 instruction set table 3 (id, security instructions) instruction name byte 1 (code) byte 2 byte 3 byte 4 byte 5 byte 6 release power down/ device id abh dummy dummy dummy (id7-id0) (1) manufacturer/ device id (2) 90h dummy dummy 00h (mf7-mf0) (id7-id0) manufacturer/device id by dual i/o 92h a23-a8 a7-a0, m[7:0] (mf[7:0], id[7:0]) manufacture/device id by quad i/o 94h a23-a0, m[7:0] xxxx, (mf[7:0], id[7:0]) (mf[7:0], id[7:0], ?) jedec id 9fh (mf7-mf0) manufacturer (id15-id8) memory type (id7-id0) capacity read unique id 4bh dummy dummy dummy dummy (id63-id0) erase security registers (3) 44h a23?a16 a15?a8 a7?a0 program security registers (3) 42h a23?a16 a15?a8 a7?a0 d7-d0 d7-d0 read security registers (3) 48h a23?a16 a15?a8 a7?a0 dummy (d7-0) notes: 1. the device id will repeat continuously until /cs terminates the instruction. 2. see manufacturer and devi ce identification table for device id information. 3. security register address: security register 0: a23-16 = 00h; a15-8 = 00h; a7-0 = byte address security register 1: a23-16 = 00h; a15-8 = 10h; a7-0 = byte address security register 2: a23-16 = 00h; a15-8 = 20h; a7-0 = byte address security register 3: a23-16 = 00h; a15-8 = 30h; a7-0 = byte address please note that security register 0 is reserved by winbond for future use. it is recommended to use security registers 1- 3 before using register 0
w25q80bw - 20 - 8.2.5 write enable (06h) the write enable instruction (figure 4) sets the write enable latch (wel) bit in t he status register to a 1. the wel bit must be set prior to every page program, quad page program, sector erase, block erase, chip erase, write status register and erase/ program security register s instruction. the write enable instruction is entered by drivi ng /cs low, shifting the instruction c ode ?06h? into the data input (di) pin on the rising edge of clk, and then driving /cs high. figure 4. write enable instruction sequence diagram 8.2.6 write enable for volatile status register (50h) the non-volatile status register bits described in secti on 8.1 can also be written to as volatile bits. this gives more flexibility to change the system configur ation and memory protection schemes quickly without waiting for the typical non-volatile bit write cycles or affecting the endurance of the status register non- volatile bits. to write the volatile values into the status register bits, the write enable for volatile status register (50h) instruction must be issued prior to a wri te status register (01h) instruction. write enable for volatile status register instruction (figure 5) will not set the write enable latch (wel) bit, it is only valid for the write status register instruction to change the volatile status register bit values. instruction (50h) figure 5. write enable for volatile stat us register instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 21 - preliminary - revision a 8.2.7 write disable (04h) the write disable instruction (figure 6) resets the wri te enable latch (wel) bit in the status register to a 0. the write disable instru ction is entered by driving /cs low, shifting the instruction code ?04h? into the di pin and then driving /cs high. no te that the wel bit is automatically reset after power-up and upon completion of the write status register, erase/pr ogram security registers, page program, quad page program, sector erase, block er ase and chip erase instructions. write disable instruction can also be used to invali date the write enable for volatile status register instruction. figure 6. write disable in struction sequence diagram
w25q80bw - 22 - 8.2.8 read status register-1 (05h) and read status register-2 (35h) the read status register instructi ons allow the 8-bit status register s to be read. the instruction is entered by driving /cs low and shifting the instruction code ?05h? for status register-1 or ?35h? for status register-2 into the di pin on the rising edge of clk. the status r egister bits are then shifted out on the do pin at the falling edge of clk with most significant bit (msb) first as shown in figure 7. the status register bits are shown in figure 3a and 3b and include the busy, wel, bp2-bp0, tb, sec, srp0, srp1, qe, lb3-0, cmp and sus bits (see status register section earlier in this datasheet). the read status register instruction may be used at any time, even while a program, erase or write status register cycle is in progress. this allows the busy status bit to be checked to determine when the cycle is complete and if the device can accept another instruction. the st atus register can be read continuously, as shown in figure 7. the inst ruction is completed by driving /cs high. figure 7. read status register instruction sequence diagram 8.2.9 write status register (01h) the write status register instruction allows the status register to be written. only non-volatile status register bits srp0, sec, tb, bp2, bp1, bp0 (bits 7 thru 2 of status register-1) and cmp, lb3, lb2, lb1, lb0, qe, srp1 (bits 14 thru 8 of status register-2) can be written to. all other status register bit locations are read-only and will not be affected by the write status register in struction. lb3-0 are non- volatile otp bits, once it is set to 1, it can not be cleared to 0. the status register bits are shown in figure 3a and 3b and described in 8.1. to write non-volatile status register bits, a standard write enable (06h) instruct ion must previously have been executed for the device to accept the write status register instruction (status register bit wel must equal 1). once write enabled, the instruction is entered by driving /cs low, sending the instruction code ?01h?, and then writing the status regist er data byte as illustrated in figure 8. to write volatile status register bits, a write enable for volatile status regist er (50h) instruction must have been executed prior to the write status register instruction (sta tus register bit wel remains 0). however, srp1 and lb3, lb2, lb1, lb0 can not be changed from ?1? to ?0? because of the otp protection for these bits. upon power off, the volatile status register bit values will be lost, and the non- volatile status register bit val ues will be restored when power on again.
w25q80bw to complete the write status register instruction, the /cs pin must be driven high after the eighth or sixteenth bit of data that is clocked in. if this is not done the write status regist er instruction will not be executed. if /cs is driven high after the eighth clock (compatible with the 25x series) the cmp, qe and srp1 bits will be cleared to 0. during non-volatile status register write operation ( 06h combined with 01h), after /cs is driven high, the self-timed write status r egister cycle will commence for a time duration of t w (see ac characteristics). while the write status register cycle is in progre ss, the read status regist er instruction may still be accessed to check the status of the busy bit. the busy bit is a 1 during the write status register cycle and a 0 when the cycle is finished and ready to accept other instructions again. after the write status register cycle has finished, the wri te enable latch (wel) bit in the st atus register will be cleared to 0. during volatile status register write operation ( 50h combined with 01h), after /cs is driven high, the status register bits will be refreshed to t he new values within the time period of t shsl2 (see ac characteristics). busy bit will remain 0 during the status register bit refresh period. please refer to 8.1 for detailed status register bit descriptions. factory default for all status register bits are 0. 15 14 13 12 11 10 9 8 status register 1 status register 2 15 14 13 12 11 10 9 8 status register 1 status register 2 status register 2 figure 8. write status register instruction sequence diagram publication release date: january 26, 2011 - 23 - preliminary - revision a
w25q80bw - 24 - 8.2.10 read data (03h) the read data instruction allows one or more data bytes to be sequentially read from the memory. the instruction is initiated by drivi ng the /cs pin low and then shifting the instruction code ?03h? followed by a 24-bit address (a23-a0) into the di pin. the c ode and address bits are latched on the rising edge of the clk pin. after the address is receiv ed, the data byte of the addressed memory location will be shifted out on the do pin at the falling edge of clk with most signi ficant bit (msb) first. the address is automatically incremented to the next higher address after each byte of data is shifted out allowing for a continuous stream of data. this means that the entire memory can be accessed with a single instruction as long as the clock continues. the instruction is completed by driving /cs high. the read data instruction sequence is shown in figur e 9. if a read data instruction is issued while an erase, program or write cycle is in process (bu sy=1) the instruction is ignored and will not have any effects on the current cycle. the r ead data instruction allows clock rates from d.c. to a maximum of f r (see ac electrical characteristics). figure 9. read data instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 25 - preliminary - revision a 8.2.11 fast read (0bh) the fast read instruction is similar to the read data instruction except that it can operate at the highest possible frequency of f r (see ac electrical characteristics) . this is accomplished by adding eight ?dummy? clocks after the 24-bit address as shown in figure 10. the dummy clocks allow the devices internal circuits additional time for setting up the in itial address. during the du mmy clocks the data value on the do pin is a ?don?t care?. figure 10. fast read instruction sequence diagram
w25q80bw - 26 - 8.2.12 fast read dual output (3bh) the fast read dual output (3bh) in struction is similar to the standard fast read (0bh) instruction except that data is output on two pins; io 0 and io 1 . this allows data to be transferred from the w25q80bw at twice the rate of standard spi devices. the fast r ead dual output instruction is ideal for quickly downloading code from flash to ram upon power-up or for applications that cache code-segments to ram for execution. similar to the fast read instructi on, the fast read dual output in struction can operate at the highest possible frequency of f r (see ac electrical characteristics) . this is accomplished by adding eight ?dummy? clocks after the 24-bit address as shown in figure 11. the dummy clocks allow the device's internal circuits additional time for setting up the in itial address. the input dat a during the dummy clocks is ?don?t care?. however, the io 0 pin should be high-impedance prior to the falling edge of the first data out clock. figure 11. fast read dual output instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 27 - preliminary - revision a 8.2.13 fast read quad output (6bh) the fast read quad output (6bh) instruction is similar to the fast read dual output (3bh) instruction except that data is output on four pins, io 0 , io 1 , io 2 , and io 3 . a quad enable of status register-2 must be executed before the device will accept the fast read quad output instru ction (status register bit qe must equal 1). the fast read quad output instru ction allows data to be transferred from the w25q80bw at four times the ra te of standard spi devices. the fast read quad output instruction can operate at the highest possible frequency of f r (see ac electrical characteristics). this is accomplished by adding eight ?dummy? clocks after the 24-bit address as shown in figure 12. the dummy clocks allow the dev ice's internal circuits additional time for setting up the initial address. the input data dur ing the dummy clocks is ?don?t care?. however, the io pins should be high-impedance prior to the falling edge of the first data out clock. figure 12. fast read quad output instruction sequence diagram
w25q80bw - 28 - 8.2.14 fast read dual i/o (bbh) the fast read dual i/o (bbh) instruction allows for improved random access while maintaining two io pins, io 0 and io 1 . it is similar to the fast read dual output (3bh) instruction but with the capability to input the address bits (a23-0) two bits per clock. this reduced instruction overhead may allow for code execution (xip) directly from the dual spi in some applications. fast read dual i/o with ?continuous read mode? the fast read dual i/o instruction can further reduce instruction overhead through setting the ?continuous read mode? bits (m7-0) after the input address bits (a23-0), as shown in figure 13a. the upper nibble of the (m7-4) controls the length of the next fast read dual i/o instruction through the inclusion or exclusion of the first byte instruction code. the lower nibble bits of the (m3-0) are don?t care (?x?). however, the io pins should be high-impedance prio r to the falling edge of the first data out clock. if the ?continuous read mode? bits m5-4 = (1,0), then the next fast read dual i/o instruction (after /cs is raised and then lowered) does not require the bbh instruction code, as shown in figure 13b. this reduces the instruction sequence by eight clocks and allows the read address to be immediately entered after /cs is asserted low. if the ?continuous read mode? bits m5-4 do not equal to (1,0), the next instruction (after /cs is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. a ?continuous read mode? reset inst ruction can also be used to reset (m7-0) before issuing normal instructions (see 8.2.20 for detail descriptions). figure 13a. fast read dual i/o instruction sequenc e (initial instruction or previous m5-4 10)
w25q80bw publication release date: january 26, 2011 - 29 - preliminary - revision a figure 13b. fast read dual i/o instruction s equence (previous instruction set m5-4 = 10)
w25q80bw - 30 - 8.2.15 fast read quad i/o (ebh) the fast read quad i/o (ebh) instruction is similar to the fast read dual i/o (bbh) instruction except that address and data bits are input and output through four pins io 0 , io 1 , io 2 and io 3 and four dummy clock are required prior to the data output . the quad i/o dramatically reduces instruction overhead allowing faster random access for code execution (xip ) directly from the quad spi. the quad enable bit (qe) of status register-2 must be set to enable the fast read quad i/o instruction. fast read quad i/o with ?continuous read mode? the fast read quad i/o instruction can further reduce instruction overhead through setting the ?continuous read mode? bits (m7-0) after the input address bits (a23-0), as shown in figure 14a. the upper nibble of the (m7-4) controls the length of the next fast r ead quad i/o instruction through the inclusion or exclusion of the first byte instruction code. the lower nibble bits of the (m3-0) are don?t care (?x?). however, the io pins should be high-impedance prio r to the falling edge of the first data out clock. if the ?continuous read mode? bits m5-4 = (1,0), t hen the next fast read quad i/o instruction (after /cs is raised and then lowered) does not require the ebh instruction code, as shown in figure 14b. this reduces the instruction sequence by eight clocks and allows the read address to be immediately entered after /cs is asserted low. if the ?continuous read mode? bits m5-4 do not equal to (1,0), the next instruction (after /cs is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. a ?continuous read mode? reset inst ruction can also be used to reset (m7-0) before issuing normal instructions (see 8.2.20 for detail descriptions). byte 1 byte 2 byte 1 byte 2 figure 14a. fast read quad i/o instruction sequenc e (initial instruction or previous m5-4 10)
w25q80bw publication release date: january 26, 2011 - 31 - preliminary - revision a figure 14b. fast read quad i/o instruction sequence (previous instruction set m5-4 = 10) fast read quad i/o with ?8/16/32/64-byte wrap around? the fast read quad i/o instruction can also be us ed to access a specific portion within a page by issuing a ?set burst with wrap? command prior to ebh. the ?set burst with wrap? command can either enable or disable the ?wrap around? feature for the following ebh commands. when ?wrap around? is enabled, the data being accessed can be limited to either a 8, 16, 32 or 64-byte section of a 256-byte page. the output data starts at the in itial address specified in the instruction, once it reaches the ending boundary of the 8/16/32/64-byte section, t he output will wrap around to the beginning boundary automatically until /cs is pulled high to terminate the command. the burst with wrap feature allows applications that use cache to quickly fetch a critical address and then fill the cache afterwards within a fixed length (8/ 16/32/64-byte) of data without issuing multiple read commands. the ?set burst with wrap? instruction allows three ?wrap bits?, w6-4 to be set. the w4 bit is used to enable or disable the ?wrap around? operation while w6 -5 are used to specify the length of the wrap around section within a page. see 8.2.18 for detail descriptions.
w25q80bw - 32 - 8.2.16 word read quad i/o (e7h) the word read quad i/o (e7h) instruction is similar to the fast read quad i/o (ebh) instruction except that the lowest address bit (a0) must equal 0 and only two dummy clock are required prior to the data output. the quad i/o dramatically reduces instruct ion overhead allowing faster random access for code execution (xip) directly from the quad spi. the quad e nable bit (qe) of status register-2 must be set to enable the word read quad i/o instruction. word read quad i/o with ?continuous read mode? the word read quad i/o instruction can further reduce instruction overhead through setting the ?continuous read mode? bits (m7-0) after the input address bits (a23-0), as shown in figure 15a. the upper nibble of the (m7-4) controls the length of the next fast r ead quad i/o instruction through the inclusion or exclusion of the first byte instruction code. the lower nibble bits of the (m3-0) are don?t care (?x?). however, the io pins should be high-impedance prio r to the falling edge of the first data out clock. if the ?continuous read mode? bits m5-4 = (1,0), t hen the next fast read quad i/o instruction (after /cs is raised and then lowered) does not require the e7h instruction code, as shown in figure 15b. this reduces the instruction sequence by eight clocks and allows the read address to be immediately entered after /cs is asserted low. if the ?continuous read mode? bits m5-4 do not equal to (1,0), the next instruction (after /cs is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. a ?continuous read mode? reset inst ruction can also be used to reset (m7-0) before issuing normal instructions (see 8.2.20 for detail descriptions). instruction (e7h) byte 1 byte 2 byte 3 4040 40 5151 51 6262 62 7373 73 instruction (e7h) byte 1 byte 2 byte 3 40404040 4040 51515151 5151 62626262 6262 73737373 7373 figure 15a. word read quad i/o instruction sequenc e (initial instruction or previous m5-4 10)
w25q80bw publication release date: january 26, 2011 - 33 - preliminary - revision a byte 1 byte 2 byte 3 4 0 4 0 4 0 5 1 5 1 5 1 6 2 6 2 6 2 7 3 7 3 7 3 byte 1 byte 2 byte 3 4 0 4 0 4 0 4 0 4 0 4 0 5 1 5 1 5 1 5 1 5 1 5 1 6 2 6 2 6 2 6 2 6 2 6 2 7 3 7 3 7 3 7 3 7 3 7 3 figure 15b. word read quad i/o instruction sequence (previous instruction set m5-4 = 10) word read quad i/o with ?8/16/32/64-byte wrap around? the word read quad i/o instruction can also be used to access a specific portion within a page by issuing a ?set burst with wrap? command prior to e 7h. the ?set burst with wrap? command can either enable or disable the ?wrap around? feature for the following e7h commands. when ?wrap around? is enabled, the data being accessed can be limited to either a 8, 16, 32 or 64-byte section of a 256-byte page. the output data starts at the in itial address specified in the instruction, once it reaches the ending boundary of the 8/16/32/64-byte section, t he output will wrap around to the beginning boundary automatically until /cs is pulled high to terminate the command. the burst with wrap feature allows applications that use cache to quickly fetch a critical address and then fill the cache afterwards within a fixed length (8/ 16/32/64-byte) of data without issuing multiple read commands. the ?set burst with wrap? instruction allows three ?wrap bits?, w6-4 to be set. the w4 bit is used to enable or disable the ?wrap around? operation while w6 -5 are used to specify the length of the wrap around section within a page. see 8.2.18 for detail descriptions.
w25q80bw - 34 - 8.2.17 octal word read quad i/o (e3h) the octal word read quad i/o (e3h) instruction is si milar to the fast read quad i/o (ebh) instruction except that the lower four address bits (a0, a1, a2, a3) must equal 0. as a result, the dummy clocks are not required, which further reduces the instructi on overhead allowing even faster random access for code execution (xip). the quad enable bi t (qe) of status register-2 must be set to enable the octal word read quad i/o instruction. octal word read quad i/o with ?continuous read mode? the octal word read quad i/o instruction can fu rther reduce instruction overhead through setting the ?continuous read mode? bits (m7-0) after the input address bits (a23-0), as shown in figure 16a. the upper nibble of the (m7-4) controls the length of the next octal word read quad i/o instruction through the inclusion or exclusion of the fi rst byte instruction code. the lower nibble bits of the (m3-0) are don?t care (?x?). however, the io pins should be high-im pedance prior to the falling edge of the first data out clock. if the ?continuous read mode? bits m5-4 = (1,0), t hen the next fast read quad i/o instruction (after /cs is raised and then lowered) does not require the e3h instruction code, as shown in figure 16b. this reduces the instruction sequence by eight clocks and allows the read address to be immediately entered after /cs is asserted low. if the ?continuous read mode? bits m5-4 do not equal to (1,0), the next instruction (after /cs is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. a ?continuous read mode? reset inst ruction can also be used to reset (m7-0) before issuing normal instructions (see 8.2.20 for detail descriptions). figure 16a. octal word read quad i/o instruction s equence (initial instructi on or previous m5-4 10) instruction (e3h) byte 1 byte 2 byte 3 4040 40 5151 51 6262 62 7373 73 40 51 62 73 byte 4 instruction (e3h) byte 1 byte 2 byte 3 404040 40 4040 515151 51 5151 626262 62 6262 737373 73 7373 4040 5151 6262 7373 byte 4
w25q80bw publication release date: january 26, 2011 - 35 - preliminary - revision a figure 16b. octal word read quad i/o instruction sequence (previous instruction set m5-4 = 10) byte 2 byte 3 byte 4 4 0 4 0 4 0 5 1 5 1 5 1 6 2 6 2 6 2 7 3 7 3 7 3 byte 1 4 0 5 1 6 2 7 3 byte 2 byte 3 byte 4 4 0 4 0 4 0 4 0 4 0 4 0 5 1 5 1 5 1 5 1 5 1 5 1 6 2 6 2 6 2 6 2 6 2 6 2 7 3 7 3 7 3 7 3 7 3 7 3 byte 1 4 0 4 0 5 1 5 1 6 2 6 2 7 3 7 3
w25q80bw - 36 - 8.2.18 set burst with wrap (77h) the set burst with wrap (77h) instruction is us ed in conjunction with ?fast read quad i/o? and ?word read quad i/o? instructions to access a fixed length of 8/16/32/64-byte secti on within a 256-byte page. certain applications can benefit from this featur e and improve the overall system code execution performance. similar to a quad i/o instruction, the set burst with wr ap instruction is initiated by driving the /cs pin low and then shifting the instruction code ?77h? follow ed by 24 dummy bits and 8 ?wrap bits?, w7-0. the instruction sequence is shown in figure 17. wrap bit w7 and the lower nibble w3-0 are not used. w6, w5 w4 = 0 w4 =1 (default) wrap around wrap length wrap around wrap length 0 0 yes 8-byte no n/a 0 1 yes 16-byte no n/a 1 0 yes 32-byte no n/a 1 1 yes 64-byte no n/a once w6-4 is set by a set burst with wrap instruction, all the following ?fast read quad i/o? and ?word read quad i/o? instructions will use the w6-4 setting to access the 8/16/32/64-by te section within any page. to exit the ?wrap around? function and return to normal read operation, another set burst with wrap instruction should be issued to set w4 = 1. the default value of w4 upon power on is 1. in the case of a system reset while w4 = 0, it is recommended that the controller issues a set burst with wrap instruction to reset w4 = 1 prior to any norma l read instructions since w25q80bw does not have a hardware reset pin. figure 17. set burst with wrap instruction sequence 0123 4567891011 12 13 14 15 mode 3 mode 0 / cs clk io 0 io 1 io 2 io 3 instruction ( 77h ) don?t care don?t care don?t care wrap bit x x x x x x x x x x x x x x x x x x x x x x x x x w6 w5 w4 x x x x 0123 4567891011 12 13 14 15 mode 3 mode 0 / cs clk io 0 io 1 io 2 io 3 instruction ( 77h ) don?t care don?t care don?t care wrap bit x x x x x x x x x x x x x x x x x x x x x x x x x w6 w5 w4 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x w6 w5 w4 x x x x
w25q80bw publication release date: january 26, 2011 - 37 - preliminary - revision a 8.2.19 continuous read mode bits (m7-0) the ?continuous read mode? bits are used in conjunc tion with ?fast read dual i/o?, ?fast read quad i/o?, ?word read quad i/o? and ?octal word read quad i/o? instructions to provide the highest random flash memory access rate with minimum spi instruction overhead, thus allow true xip (execute in place) to be performed on serial flash devices. m7-0 need to be set by the dual/quad i/o read instruct ions. m5-4 are used to control whether the 8-bit spi instruction code (bbh, ebh, e7h or e3h) is needed or not for the next command. when m5-4 = (1,0), the next command will be treated same as the cu rrent dual/quad i/o read command without needing the 8-bit instruction code; when m5-4 do not equal to (1,0), the device returns to normal spi mode, all commands can be accepted. m7-6 and m3-0 are reserved bi ts for future use, either 0 or 1 values can be used. 8.2.20 continuous read mode reset (ffh or ffffh) continuous read mode reset instruction can be used to set m4 = 1, thus the device will release the continuous read mode and return to normal spi operation, as shown in figure 18. /cs mode bit reset for dual i/o mode 3 mode 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mode 3 mode 0 mode bit reset for quad i/o ffh ffh don?t care don?t care don?t care io 3 clk io 0 io 1 io 2 /cs mode bit reset for dual i/o mode 3 mode 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mode 3 mode 0 mode bit reset for quad i/o ffh ffh don?t care don?t care don?t care io 3 clk io 0 io 1 io 2 figure 18. continuous read mode reset for fast read dual/quad i/o since w25q80bw does not have a hardware reset pin, so if the controller resets while w25q80bw is set to continuous mode read, the w25q80bw will not recognize any initial standard spi instructions from the controller. to address this possibility, it is recommended to issue a continuous read mode reset instruction as the first instruction after a sy stem reset. doing so will release the device from the continuous read mode and allow standard spi instructions to be recognized. to reset ?continuous read mode? during quad i/o operation, only eight clocks are needed. the instruction is ?ffh?. to reset ?continuous read mode? during dual i/o operation, sixteen clocks are needed to shift in instruction ?ffffh?.
w25q80bw - 38 - 8.2.21 page program (02h) the page program instruction allows from one byte to 256 bytes (a page) of data to be programmed at previously erased (ffh) memory locations. a write enable instruction must be executed before the device will accept the page program in struction (status register bit wel= 1). the instruction is initiated by driving the /cs pin low then shifting the instruction code ?02h? followed by a 24-bit address (a23-a0) and at least one data byte, into the di pin. the /cs pin must be held low for the entire length of the instruction while data is being sent to the device. the page program instruction sequence is shown in figure 19. if an entire 256 byte page is to be programmed, the last address byte (the 8 least significant address bits) should be set to 0. if the last address byte is not zero, and the number of clocks exceed the remaining page length, the addressing will wrap to the beginning of the page. in some cases, less than 256 bytes (a partial page) can be programmed without having any e ffect on other bytes within the same page. one condition to perform a partial page program is that the number of clocks can not exceed the remaining page length. if more than 256 bytes are sent to the device the addressing will wrap to the beginning of the page and overwrite previously sent data. as with the write and erase instructions, the /cs pin must be driven high after the eighth bit of the last byte has been latched. if this is not done the page progr am instruction will not be executed. after /cs is driven high, the self-timed page progr am instruction will commence for a time duration of tpp (see ac characteristics). while the page program cycle is in progress, the read status register instruction may still be accessed for checking the status of the bu sy bit. the busy bit is a 1 during the page program cycle and becomes a 0 when the cycle is finished and t he device is ready to accept other instructions again. after the page program cycle has finished the write enable latch (we l) bit in the status register is cleared to 0. the page program instruction will not be executed if the addressed page is protected by the block protect (cmp, sec , tb, bp2, bp1, and bp0) bits. figure 19. page program instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 39 - preliminary - revision a 8.2.22 quad input page program (32h) the quad page program instruction allows up to 256 bytes of data to be programmed at previously erased (ffh) memory locations using four pins: io 0 , io 1 , io 2 , and io 3 . the quad page program can improve performance for prom programmer and applic ations that have slow clock speeds <5mhz. systems with faster clock speed will not realize much benefit for the quad page program instruction since the inherent page program time is much greater than the time it take to clock-in the data. to use quad page program the quad enable in status register-2 must be set (qe=1). a write enable instruction must be executed befor e the device will accept the quad page program instruction (status register-1, wel=1). the instructi on is initiated by driving the /cs pin low then shifting the instruction code ?32h? followed by a 24-bit address (a23-a0) and at least one data byte, into the io pins. the /cs pin must be held low for the entire length of the instruction while data is bei ng sent to the device. all other functions of quad page program are identical to standard page program. the quad page program instruction sequence is shown in figure 20. figure 20. quad input page program instruction sequence diagram
w25q80bw - 40 - 8.2.23 sector erase (20h) the sector erase instruction sets all memory within a specified sector (4k-bytes) to the erased state of all 1s (ffh). a write enable instruction must be exec uted before the device will a ccept the sector erase instruction (status register bit wel must equal 1). the instruction is initiated by driving the /cs pin low and shifting the instruction code ?20h? followed a 24-bit sector address (a23-a0) (see figure 2). the sector erase instruction sequence is shown in figure 21. the /cs pin must be driven high after the eighth bit of the last byte has been latched. if this is not done the sector erase instruction will not be executed. after /cs is driven high, the self-timed sector erase instruction will commence for a time duration of t se (see ac characteristics). while the sector erase cycle is in progress, the read stat us register instruction may still be accessed for checking the status of the busy bit. the busy bit is a 1 during the sector erase cycle and becomes a 0 when the cycle is finished and the device is ready to accept other inst ructions again. after the sector erase cycle has finished the write enable latch (wel) bit in the stat us register is cleared to 0. the sector erase instruction will not be executed if the addressed page is protected by the block protect (cmp, sec, tb, bp2, bp1, and bp0) bits (see status r egister memory protection table). figure 21. sector erase instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 41 - preliminary - revision a 8.2.24 32kb block erase (52h) the block erase instruction sets all memory within a specified block (32k-bytes) to the erased state of all 1s (ffh). a write enable instruction must be exec uted before the device will accept the block erase instruction (status register bit wel must equal 1). the instruction is initiated by driving the /cs pin low and shifting the instruction code ?52h? followed a 24- bit block address (a23-a0) (see figure 2). the block erase instruction sequence is shown in figure 22. the /cs pin must be driven high after the eighth bit of the last byte has been latched. if this is not done the block erase instruction will not be executed. after /cs is driven high, the self-timed block erase instruction will commence for a time duration of t be 1 (see ac characteristics). while the block erase cycle is in progress, the read stat us register instruction may still be accessed for checking the status of the busy bit. the busy bit is a 1 during the blo ck erase cycle and becomes a 0 when the cycle is finished and the device is ready to accept other in structions again. after t he block erase cycle has finished the write enable latch (wel) bit in the st atus register is cleared to 0. the block erase instruction will not be executed if the addressed page is protected by the block protect (cmp, sec, tb, bp2, bp1, and bp0) bits (see status r egister memory protection table). figure 22. 32kb block erase instruction sequence diagram
w25q80bw - 42 - 8.2.25 64kb block erase (d8h) the block erase instruction sets all memory within a specified block (64k-bytes) to the erased state of all 1s (ffh). a write enable instruction must be exec uted before the device will accept the block erase instruction (status register bit wel must equal 1). the instruction is initiated by driving the /cs pin low and shifting the instruction code ?d8h? followed a 24- bit block address (a23-a0) (see figure 2). the block erase instruction sequence is shown in figure 23. the /cs pin must be driven high after the eighth bit of the last byte has been latched. if this is not done the block erase instruction will not be executed. after /cs is driven high, the self-timed block erase instruction will commence for a time duration of t be (see ac characteristics). while the block erase cycle is in progress, the read status r egister instruction may still be access ed for checking the status of the busy bit. the busy bit is a 1 during the block eras e cycle and becomes a 0 when the cycle is finished and the device is ready to accept ot her instructions again. after the block erase cycle has finished the write enable latch (wel) bit in the status register is cleared to 0. the block erase instruction will not be executed if the addressed page is protected by the block protect (cmp, sec, tb, bp2, bp1, and bp0) bits (see status register memory protection table). figure 23. 64kb block erase instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 43 - preliminary - revision a 8.2.26 chip erase (c7h / 60h) the chip erase instruction sets all memory within the device to the erased state of all 1s (ffh). a write enable instruction must be executed before the device will accept the chip erase instruction (status register bit wel must equal 1). the instruction is initiated by driving the /cs pin low and shifting the instruction code ?c7h? or ?60h?. the chip eras e instruction sequence is shown in figure 24. the /cs pin must be driven high after the eighth bit has been latched. if this is not done the chip erase instruction will not be executed. after /cs is driv en high, the self-timed chip erase instruction will commence for a time duration of t ce (see ac characteristics). while the chip erase cycle is in progress, the read status register instruction may still be a ccessed to check the status of the busy bit. the busy bit is a 1 during the chip erase cycle and bec omes a 0 when finished and the device is ready to accept other instructions again. a fter the chip erase cycle has finis hed the write enable latch (wel) bit in the status register is cleared to 0. the chip erase instruction will not be executed if any page is protected by the block protect (cmp, sec, tb, bp2 , bp1, and bp0) bits (see status register memory protection table). figure 24. chip erase instruction sequence diagram
w25q80bw - 44 - 8.2.27 erase / program suspend (75h) the erase/program suspend instruction ?75h?, allows the system to interrupt a sector or block erase operation or a page program operation and then read from or program/erase data to, any other sectors or blocks. the erase/program suspend inst ruction sequence is shown in figure 25. the write status register instruction (01h) and erase instructions (20h, 52h, d 8h, c7h, 60h, 44h) are not allowed during erase suspend. erase suspend is valid only during the sector or block erase operation. if written during the chip erase operation, the erase suspend instruction is ignored. the write status register instruction (01h) and program instructi ons (02h, 32h, 42h) are not allowed during program suspend. program suspend is valid only during t he page program or quad page program operation. the erase/program suspend instruction ?75h? will be a ccepted by the device only if the sus bit in the status register equals to 0 and the busy bit equals to 1 while a sector or block erase or a page program operation is on-going. if the sus bit equals to 1 or the busy bit equals to 0, the suspend instruction will be ignored by the dev ice. a maximum of time of ?t sus ? (see ac characteristics) is required to suspend the erase or program operation. the busy bi t in the status register will be cleared from 1 to 0 within ?t sus ? and the sus bit in the status register will be set from 0 to 1 immediately after erase/program suspend. for a previously resumed eras e/program operation, it is also required that the suspend instruction ?75h? is not issued earlier than a minimum of time of ?t sus ? following the preceding resume instruction ?7ah?. unexpected power off during the erase/program su spend state will reset the device and release the suspend state. sus bit in the status register will al so reset to 0. the data within the page, sector or block that was being suspended may become corrupted. it is recommended for the user to implement system design techniques against the accidental power interruption and preserve data integrity during erase/program suspend state. figure 25. erase/program suspend instruction sequence
w25q80bw publication release date: january 26, 2011 - 45 - preliminary - revision a 8.2.28 erase / program resume (7ah) the erase/program resume instruction ?7ah? must be written to resume the sector or block erase operation or the page program operation after an er ase/program suspend. the resume instruction ?7ah? will be accepted by the device only if the sus bit in the status register equals to 1 and the busy bit equals to 0. after issued the sus bit will be cleared from 1 to 0 immediately, the busy bit will be set from 0 to 1 within 200ns and the sector or blo ck will complete the erase operation or the page will complete the program operation. if the sus bit equal s to 0 or the busy bit equals to 1, the resume instruction ?7ah? will be ignored by the device. t he erase/program resume instruction sequence is shown in figure 26. resume instruction is ignored if the previous erase/program suspend operation was interrupted by unexpected power off. it is also required that a s ubsequent erase/program suspend instruction not to be issued within a minimum of time of ?t sus ? following a previous resume instruction. figure 26. erase/program resume instruction sequence
w25q80bw - 46 - 8.2.29 power-down (b9h) although the standby current during nor mal operation is relatively low, standby current can be further reduced with the power-down instruction. the lower power consumption makes the power-down instruction especially useful for battery powered applic ations (see icc1 and icc2 in ac characteristics). the instruction is initiated by driving the /cs pin low and shifting the instruction code ?b9h? as shown in figure 27. the /cs pin must be driven high after the eighth bi t has been latched. if this is not done the power-down instruction will not be executed. afte r /cs is driven high, the power-down state will entered within the time duration of t dp (see ac characteristics). while in the pow er-down state only the release from power- down / device id instruction, which restores the dev ice to normal operation, will be recognized. all other instructions are ignored. this incl udes the read status register instru ction, which is always available during normal operation. ignoring all but one instructi on makes the power down state a useful condition for securing maximum write protection. the device always powers-up in the normal operation with the standby current of icc1. figure 27. deep power-down instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 47 - preliminary - revision a 8.2.30 release power-down / device id (abh) the release from power-down / device id instructi on is a multi-purpose instruction. it can be used to release the device from the power-dow n state, or obtain the devices elec tronic identification (id) number. to release the device from the power-down state, the instruction is i ssued by driving the /cs pin low, shifting the instruction code ?abh? and driving /cs high as shown in figure 28a. release from power- down will take the time duration of t res1 (see ac characteristics) before the device will resume normal operation and other instructions are accepted. the /cs pin must remain high during the t res1 time duration. when used only to obtain the device id while not in t he power-down state, the inst ruction is initiated by driving the /cs pin low and shifting the instruction c ode ?abh? followed by 3-dummy bytes. the device id bits are then shifted out on the falling edge of clk with most significant bit (msb) first as shown in figure 28a. the device id values for the w25q80bw is list ed in manufacturer and device identification table. the device id can be read continuously. the inst ruction is completed by driving /cs high. when used to release the device from the power-down state and obtain the device id, the instruction is the same as previously described, and shown in figure 28b, except that after /c s is driven high it must remain high for a time duration of t res2 (see ac characteristics). after this time duration the device will resume normal operation and other instructions w ill be accepted. if the release from power-down / device id instruction is issued while an erase, pr ogram or write cycle is in process (when busy equals 1) the instruction is ignored and will not have any effects on the current cycle. figure 28a. release power-down instruction sequence
w25q80bw - 48 - figure 28b. release power-down / devi ce id instruction sequence diagram
w25q80bw publication release date: january 26, 2011 - 49 - preliminary - revision a 8.2.31 read manufacturer / device id (90h) the read manufacturer/device id instruction is an al ternative to the release from power-down / device id instruction that provides both the jedec assigned manufacturer id and the specific device id. the read manufacturer/device id instruction is very similar to the release from power-down / device id instruction. the instruction is in itiated by driving the /cs pin low and shifting the instruction code ?90h? followed by a 24-bit address (a23-a0) of 000000h. afte r which, the manufacturer id for winbond (efh) and the device id are shifted out on the falling edge of cl k with most significant bit (msb) first as shown in figure 29. the device id values for the w25q80bw is listed in manufacturer and device identification table. if the 24-bit address is initially set to 000001h the device id will be read first and then followed by the manufacturer id. the manufacturer and device id s can be read continuously, alternating from one to the other. the instruction is completed by driving /cs high. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 figure 29. read manufacturer / device id diagram
w25q80bw - 50 - 8.2.32 read manufacturer / device id dual i/o (92h) the manufacturer / device id dual i/o instruction is an alternative to the read manufacturer/device id instruction that provides both t he jedec assigned manufacturer id and the specific device id at 2x speed. the read manufacturer / device id dual i/o instruction is similar to the fast read dual i/o instruction. the instruction is initiated by driving the /cs pin low and shifting the instruction code ?92h? followed by a 24-bit address (a23-a0) of 000000h, 8-bit continuous r ead mode bits, with the capability to input the address bits two bits per clock. after which, t he manufacturer id for winbond (efh) and the device id are shifted out 2 bits per clock on the falling edge of clk with most significant bits (msb) first as shown in figure 30. the device id values for the w25q80bw is listed in manufacturer and device identification table. if the 24-bit address is initially set to 000001h the device id will be read first and then followed by the manufacturer id. the manufacturer and device id s can be read continuously, alternating from one to the other. the instruction is completed by driving /cs high. figure 30. read manufacturer / device id dual i/o diagram note: the ?continuous read mode? bits m7-0 must be set to fxh to be compatible with fast read dual i/o instruction.
w25q80bw publication release date: january 26, 2011 - 51 - preliminary - revision a 8.2.33 read manufacturer / device id quad i/o (94h) the read manufacturer / device id quad i/o instruct ion is an alternative to the read manufacturer / device id instruction that prov ides both the jedec assigned manufactu rer id and the specific device id at 4x speed. the read manufacturer / device id quad i/o instruction is similar to the fast read quad i/o instruction. the instruction is initiated by driving the /cs pin low and shifting the instruction code ?94h? followed by a 24-bit address (a23-a0) of 000000h, 8-bit continuous read mode bits and then four clock dummy cycles, with the capability to input the address bits four bits per clock. after which, the manufacturer id for winbond (efh) and the device id are shifted out four bits per clock on the falling edge of clk with most significant bit (msb) first as shown in figure 31. t he device id values for the w25q80bw is listed in manufacturer and device identificati on table. if the 24-bit address is initially set to 000001h the device id will be read first and then followed by the manufacture r id. the manufacturer and device ids can be read continuously, alternating from one to the other. t he instruction is completed by driving /cs high. figure 31. read manufacturer / device id quad i/o diagram note: the ?continuous read mode? bits m7-0 must be set to fxh to be compatible with fast read quad i/o instruction.
w25q80bw - 52 - 8.2.34 read unique id number (4bh) the read unique id number instruction accesses a fa ctory-set read-only 64-bit number that is unique to each w25q80bw device. the id number can be used in conjunction with user software methods to help prevent copying or cloning of a syst em. the read unique id instruction is initiated by driving the /cs pin low and shifting the instruction code ?4bh? followed by a four bytes of dummy cl ocks. after which, the 64- bit id is shifted out on the falling edge of clk as shown in figure 32. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 10 1 102 103 do 63 62 61 60 59 2 1 0 * *=msb do 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 10 1 102 103 do 63 62 61 60 59 2 1 0 * *=msb do figure 32. read unique id number instruction sequence
w25q80bw publication release date: january 26, 2011 - 53 - preliminary - revision a 8.2.35 read jedec id (9fh) for compatibility reasons, the w25q80bw provides seve ral instructions to electronically determine the identity of the device. the read je dec id instruction is compatible with the jedec standard for spi compatible serial memories that was adopted in 2003. t he instruction is initiated by driving the /cs pin low and shifting the instruction code ?9fh?. the je dec assigned manufacturer id byte for winbond (efh) and two device id bytes, memory type (id15-id8) and capacity (id7-id0) ar e then shifted out on the falling edge of clk with most significant bit (msb) first as shown in figure 33. for memory type and capacity values refer to manufacture r and device identification table. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 figure 33. read jedec id instruction sequence
w25q80bw - 54 - 8.2.36 erase security registers (44h) the w25q80bw offers four 256-byte security registers which can be erased and programmed individually. these registers may be used by the sy stem manufacturers to store security and other important information separately from the main memory array. the erase security register instruction is simila r to the sector erase instruction. a write enable instruction must be executed before t he device will accept the erase securi ty register instruction (status register bit wel must equal 1). the instruction is initiated by driving the /cs pin low and shifting the instruction code ?44h? followed by a 24-bit address (a23-a0 ) to erase one of the four security registers. address a23-16 a15-12 a11-8 a7-0 security register #0* 00h 0 0 0 0 0 0 0 0 don?t care security register #1 00h 0 0 0 1 0 0 0 0 don?t care security register #2 00h 0 0 1 0 0 0 0 0 don?t care security register #3 00h 0 0 1 1 0 0 0 0 don?t care * please note that security register 0 is reserved by winbond for future use. it is recommended to use security register s 1- 3 before using register 0. the erase security register instruction sequence is shown in figure 34. the /cs pin must be driven high after the eighth bit of the last by te has been latched. if this is not done the instruction will not be executed. after /cs is driven high, the self-timed erase secu rity register operation will commence for a time duration of t se (see ac characteristics). while the erase security register cycle is in progress, the read status register instruction may still be accessed for checking the status of the busy bit. the busy bit is a 1 during the erase cycle and becomes a 0 when the cy cle is finished and the device is ready to accept other instructions again. after t he erase security register cycle has finished the write enable latch (wel) bit in the status register is cleared to 0. the security register lock bits (lb3-0) in the status register-2 can be used to otp protect the security registers. once a lock bit is set to 1, the corresponding security register will be permanently locked, erase security register instruction to that register will be ignored (see 9.1.9 for detail descriptions). figure 34. erase security registers instruction sequence instruction (44h)
w25q80bw publication release date: january 26, 2011 - 55 - preliminary - revision a 8.2.37 program security registers (42h) the program security register instruction is simila r to the page program instruction. it allows from one byte to 256 bytes of security register data to be programmed at previously erased (ffh) memory locations. a write enable instruction must be executed before the device will accept the program security register instruction (status regi ster bit wel= 1). the instructi on is initiated by driving the /cs pin low then shifting the instruction code ?42h? followed by a 24-bit address (a23-a0) and at least one data byte, into the di pin. the /cs pin must be held low for the entire length of the instruction while data is being sent to the device. address a23-16 a15-12 a11-8 a7-0 security register #0* 00h 0 0 0 0 0 0 0 0 byte address security register #1 00h 0 0 0 1 0 0 0 0 byte address security register #2 00h 0 0 1 0 0 0 0 0 byte address security register #3 00h 0 0 1 1 0 0 0 0 byte address * please note that security register 0 is reserved by winbond for future use. it is recommended to use security register s 1- 3 before using register 0. the program security register instruction sequence is shown in figure 35. the security register lock bits (lb3-0) in the status register-2 can be used to ot p protect the security registers. once a lock bit is set to 1, the corresponding security register will be permanently locked, program security register instruction to that register will be ignor ed (see 9.1.9, 9.2.21 for detail descriptions). figure 35. program security registers instruction sequence instruction (42h)
w25q80bw - 56 - 8.2.38 read security registers (48h) the read security register instruction is similar to the fast read instruction and allows one or more data bytes to be sequentially read from one of the four security registers. the instruction is initiated by driving the /cs pin low and then shifting the instruction c ode ?48h? followed by a 24-bit address (a23-a0) and eight ?dummy? clocks into the di pin. the code and address bits are latched on the rising edge of the clk pin. after the address is received, the data byte of the addressed memory location will be shifted out on the do pin at the falling edge of clk with most significant bit (msb) first. the byte address is automatically incremented to the next byte address afte r each byte of data is shifted out. once the byte address reaches the last byte of the register (byte ffh), it will reset to 00h, the first byte of the register, and continue to increment. the instruction is complet ed by driving /cs high. the read security register instruction sequence is shown in figure 36. if a read security register instruction is issued while an erase, program or write cycle is in process (bu sy=1) the instruction is ignored and will not have any effects on the current cycle. the r ead security register instruction a llows clock rates from d.c. to a maximum of f r (see ac electrical characteristics). address a23-16 a15-12 a11-8 a7-0 security register #0* 00h 0 0 0 0 0 0 0 0 byte address security register #1 00h 0 0 0 1 0 0 0 0 byte address security register #2 00h 0 0 1 0 0 0 0 0 byte address security register #3 00h 0 0 1 1 0 0 0 0 byte address * please note that security register 0 is reserved by winbond for future use. it is recommended to use security register s 1- 3 before using register 0. figure 36. read security registers instruction sequence instruction (48h) instruction (48h)
w25q80bw publication release date: january 26, 2011 - 57 - preliminary - revision a 9. electrical characteristics (1) 9.1 absolute maximum ratings (2) parameters symbol conditions range unit supply voltage vcc ?0.6 to +4.0 v voltage applied to any pin v io relative to ground ?0.6 to vcc+0.4 v transient voltage on any pin v iot <20ns transient relative to ground ?2.0v to vcc+2.0v v storage temperature t stg ?65 to +150 c lead temperature t lead see note (3) c electrostatic discharge voltage v esd human body model (4) ?2000 to +2000 v notes: 1. specification for w25q80bw is preliminary. see preliminary designation at the end of this document. 2. this device has been designed and tested for the specified operation ranges. proper operation outside of these levels is not guaranteed. exposure to absol ute maximum ratings may affect device reliability. exposure beyond absolute maximum ra tings may cause permanent damage. 3. compliant with jedec standard j-std-20c for sm all body sn-pb or pb-free (green) assembly and the european directive on restrictions on hazardous substances (rohs) 2002/95/eu. 4. jedec std jesd22-a114a (c1= 100pf, r1=1500 ohms, r2=500 ohms). 9.2 operating ranges parameter symbol conditions spec unit min max supply voltage (1) vcc f r = 80mhz, f r = 50mhz 1.65 1.95 v ambient temperature, operating t a industrial ?40 +85 c note: 1. vcc voltage during read can operate across the min and max range but should not exceed 10% of the programming (erase/write) voltage.
w25q80bw - 58 - 9.3 power-up timing and write inhibit threshold parameter symbol spec unit min max vcc (min) to /cs low t vsl (1) 10 s time delay before write instruction t puw (1) 1 10 ms write inhibit threshold voltage v wi (1) 1.0 1.4 v note: 1. these parameters are characterized only. figure 37. power-up timing and voltage levels
w25q80bw publication release date: january 26, 2011 - 59 - preliminary - revision a 9.4 dc electrical characteristics parameter symbol conditions spec unit min typ max input capacitance c in (1) v in = 0v (1) 6 pf output capacitance cout (1) v out = 0v (1) 8 pf input leakage i li 2 a i/o leakage i lo 2 a standby current i cc 1 /cs = vcc, vin = gnd or vcc 25 50 a power-down current i cc 2 /cs = vcc, vin = gnd or vcc 1 5 a current read data / dual /quad 1mhz (2) i cc 3 c = 0.1 vcc / 0.9 vcc do = open 4/5/6 6/7.5/9 ma current read data / dual /quad 33mhz (2) i cc 3 c = 0.1 vcc / 0.9 vcc do = open 6/7/8 9/10.5/12 ma current read data / dual /quad 50mhz (2) i cc 3 c = 0.1 vcc / 0.9 vcc do = open 7/8/9 10/12/13.5 ma current read data / dual output read/quad output read 80mhz (2) i cc 3 c = 0.1 vcc / 0.9 vcc do = open 10/11/12 15/16.5/18 ma current write status register i cc 4 /cs = vcc 8 12 ma current page program i cc 5 /cs = vcc 20 25 ma current sector/block erase i cc 6 /cs = vcc 20 25 ma current chip erase i cc 7 /cs = vcc 20 25 ma input low voltage v il vcc x 0.3 v input high voltage v ih vcc x 0.7 v output low voltage v ol i ol = 100 a 0.2 v output high voltage v oh i oh = ?100 a vcc ? 0.2 v notes: 1. tested on sample basis and specified through design and characterization data. ta = 25 c, vcc = 1.8v. 2. checker board pattern.
w25q80bw - 60 - 9.5 ac measurement conditions parameter symbol spec unit min max load capacitance c l 30 pf input rise and fall times t r , t f 5 ns input pulse voltages v in 0.2 vcc to 0.8 vcc v input timing reference voltages in 0.3 vcc to 0.7 vcc v output timing reference voltages o ut 0.5 vcc to 0.5 vcc v note: 1. output hi-z is defined as the point where data out is no longer driven. figure 38. ac measurement i/o waveform
w25q80bw publication release date: january 26, 2011 - 61 - preliminary - revision a 9.6 ac electrical characteristics description symbol alt spec unit min typ max clock frequency for all instructions except read data instruction (03h) f r f c d.c. 80 mhz clock frequency for read data instruction (03h) f r d.c. 50 mhz clock high, low time for all instructions except read data (03h) t clh 1 , t cll 1 (1) 6 ns clock high, low time for read data (03h) instruction t crlh , t crll (1) 8 ns clock rise time peak to peak t clch (2) 0.1 v/ns clock fall time peak to peak t chcl (2) 0.1 v/ns /cs active setup time relative to clk t slch t css 5 ns /cs not active hold time relative to clk t chsl 5 ns data in setup time t dvch t dsu 2 ns data in hold time t chdx t dh 5 ns /cs active hold time relative to clk t chsh 5 ns /cs not active setup time relative to clk t shch 5 ns /cs deselect time (for array read ? array read) t shsl 1 t csh 10 ns /cs deselect time (for erase or program ? read status registers) volatile status register write time t shsl 2 t csh 50 50 ns output disable time t shqz (2) t dis 7 ns clock low to output valid t clqv 1 t v 1 7 ns clock low to output valid (for read id instructions) t clqv 2 t v 2 7.5 ns output hold time t clqx t ho 0 ns /hold active setup time relative to clk t hlch 5 ns continued ? next page
w25q80bw - 62 - 9.7 ac electrical characteristics ( cont?d) description symbol alt spec unit min typ max /hold active hold time relative to clk t chhh 5 ns /hold not active setup time relative to clk t hhch 5 ns /hold not active hold time relative to clk t chhl 5 ns /hold to output low-z t hhqx (2) t lz 7 ns /hold to output high-z t hlqz (2) t hz 12 ns write protect setup time before /cs low t whsl (3) 20 ns write protect hold time after /cs high t shwl (3) 100 ns /cs high to power-down mode t dp (2) 3 s /cs high to standby mode without electronic signature read t res 1 (2) 30 s /cs high to standby mode with electronic signature read t res 2 (2) 30 s /cs high to next instruction after suspend t sus (2) 20 s write status register time t w 10 15 ms byte program time (first byte) (4) t bp1 30 50 s additional byte program time (after first byte) (4) t bp2 2.5 12 s page program time t pp 0.4 0.8 ms sector erase time (4kb) t se 30 200/400 (5) ms block erase time (32kb) t be 1 120 800 ms block erase time (64kb) t be 2 150 1,000 ms chip erase time t ce 2 6 s notes: 1. clock high + clock low must be less than or equal to 1/f c . 2. value guaranteed by design and/or characte rization, not 100% tested in production. 3. only applicable as a constraint for a write status register instruction when srp0 bit is set to 1. 4. for multiple bytes after first byte within a page, t bpn = t bp1 + t bp2 * n (typical) and t bpn = t bp1 + t bp2 * n (max), where n = number of bytes programmed. 5. max value t se with <50k cycles is 200ms and >50k & <100k cycles is 400ms.
w25q80bw publication release date: january 26, 2011 - 63 - preliminary - revision a 9.8 serial output timing 9.9 serial input timing 9.10 hold timing
w25q80bw - 64 - 10. package specification 10.1 8-pin soic 150-mil (package code sn) l c d a1 a e b seating plane y 0.25 gauge plane e h e 4 1 5 8 l c d a1 a e b b b seating plane y 0.25 gauge plane e h e e h e 4 1 5 8 symbol millimeters inches min max min max a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.004 0.010 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.008 0.010 e (3 ) 3.80 4.00 0.150 0.157 d (3 ) 4.80 5.00 0.188 0.196 e (2 ) 1.27 bsc 0.050 bsc h e 5.80 6.20 0.228 0.244 y (4 ) --- 0.10 --- 0.004 l 0.40 1.27 0.016 0.050 0 10 0 10 notes: 1. controlling dimensions: millimeter s, unless otherwise specified. 2. bsc = basic lead spacing between centers. 3. dimensions d and e do not include mold flash protrusi ons and should be measured from the bottom of the package. 4. formed leads coplanarity with respect to seating plane shall be within 0.004 inches.
w25q80bw publication release date: january 26, 2011 - 65 - preliminary - revision a 10.2 8-pin soic 208-mil (package code ss) gauge pl ane gauge pl ane symbol millimeters inches min nom max min nom max a 1.75 1.95 2.16 0.069 0.077 0.085 a1 0.05 0.15 0.25 0.002 0.006 0.010 a2 1.70 1.80 1.91 0.067 0.071 0.075 b 0.35 0.42 0.48 0.014 0.017 0.019 c 0.19 0.20 0.25 0.007 0.008 0.010 d 5.18 5.28 5.38 0.204 0.208 0.212 d1 5.13 5.23 5.33 0.202 0.206 0.210 e 5.18 5.28 5.38 0.204 0.208 0.212 e1 5.13 5.23 5.33 0.202 0.206 0.210 e (2 ) 1.27 bsc. 0.050 bsc. h 7.70 7.90 8.10 0.303 0.311 0.319 l 0.50 0.65 0.80 0.020 0.026 0.031 y --- --- 0.10 --- --- 0.004 0 --- 8 0 --- 8 notes: 1. controlling dimensions: millimeter s, unless otherwise specified. 2. bsc = basic lead spacing between centers. 3. dimensions d1 and e1 do not include mold flash protrusions and should be meas ured from the bottom of the package. 4. formed leads coplanarity with respect to seating plane shall be within 0.004 inches.
w25q80bw - 66 - 10.3 8-pad wson 6x5-mm (package code zp) symbol millimeters inches min nom max min nom max a 0.70 0.75 0.80 0.028 0.030 0.031 a1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.35 0.40 0.48 0.014 0.016 0.019 c --- 0.20 ref. --- --- 0.008 ref. --- d 5.90 6.00 6.10 0.232 0.236 0.240 d2 3.35 3.40 3.45 0.132 0.134 0.136 e 4.90 5.00 5.10 0.193 0.197 0.201 e2 4.25 4.30 4.35 0.167 0.169 0.171 e (2 ) 1.27 bsc. 0.050 bsc. l 0.55 0.60 0.65 0.022 0.024 0.026 y 0.00 --- 0.075 0.000 --- 0.003
w25q80bw publication release date: january 26, 2011 - 67 - preliminary - revision a 8-pad wson 6x5-mm cont?d. symbol millimeters inches min nom max min nom max solder pattern m 3.40 0.134 n 4.30 0.169 p 6.00 0.236 q 0.50 0.020 r 0.75 0.026 notes: 1. advanced packaging information; please contact winbond for the latest minimum and maximum specifications. 2. bsc = basic lead spacing between centers. 3. dimensions d and e do not include mold flash protrusi ons and should be measured from the bottom of the package. 4. the metal pad area on the bottom center of the package is connected to the device ground (g nd pin). avoid placement of exposed pcb vias under the pad.
w25q80bw - 68 - 10.4 8-pad uson 2x3-mm (package code ux) note: exposed pad dimension d2 & e2 may be different by die size. symbo l millimeter inches min typ. max min typ. max a 0.50 0.55 0.60 0.020 0.022 0.024 a1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.20 0.25 0.300 0.008 0.010 0.012 c D 0.15 ref D D 0.006 D d 1.90 2.00 2.10 0.075 0.079 0.083 d2 1.55 1.60 1.65 0.061 0.063 0.065 e 2.90 3.00 3.10 0.114 0.118 0.122 e2 0.15 0.20 0.25 0.006 0.008 0.010 e D 0.50 D D 0.020 D l 0.40 0.45 0.50 0.016 0.018 0.020 l1 D 0.10 D D 0.004 D l3 0.30 0.35 0.40 0.012 0.014 0.016 y 0.000 D 0.075 0.000 D 0.003 a 1 y d2 l3 e e l c b l1 a e d pin 1
w25q80bw publication release date: january 26, 2011 - 69 - preliminary - revision a 11. ordering information w (1) 25q 80b w xx (2) w = winbond 25q = spiflash serial flash memo ry with 4kb sectors, dual/quad i/o 80b = 8m-bit w = 1.65v to 1.95v sn = 8-pin soic 150-mil ss = 8-pin soic 208-mi zp = 8-pad wson 6x5-mm ux = 8-pad uson 2x3-mm i = industrial (-40c to +85c) g = green package (lead-free, rohs compli ant, halogen-free (tbba), antimony-oxide-free sb 2 o 3 ) p = green package with status register power-down & otp enabled (3,4) notes: 1. the ?w? prefix is not included on the part marking. 2. only the 2 nd letter is used for the part marking. wson package type zp is not used for the part marking. uson package type ux has special top marking due to size limitation. 3. standard bulk shipments are in tube (shape e). please specify alternat e packing method, such as tape and reel (shape t) or tray (shape s), when placing orders. 4. for shipments with otp feature enabl ed, please specify w hen placing orders.
w25q80bw - 70 - 11.1 valid part numbers and top side marking the following table provides the valid part numbers for the w25q80bw spiflash memory. please contact winbond for specific availability by density and pa ckage type. winbond spiflash memories use an 12- digit product number for ordering. however, due to limited space, the top side marking on all packages use an abbreviated 10-digit number (11-digit for the uson package). package type density product number top side marking sn (2) soic-8 150mil 8m-bit W25Q80BWSNIG w25q80bwsnip 25q80bwnig 25q80bwnip ss soic-8 208mil 8m-bit w25q80bwssig w25q80bwssip 25q80bwsig 25q80bwsip zp (1) wson-8 6x5mm 8m-bit w25q80bwzpig w25q80bwzpip 25q80bwig 25q80bwip ux (3) uson-8 2x3mm 8m-bit w25q80bwuxig 8exxx 0gxxxx w25q80bwuxip 8exxx 0pxxxx notes: 1. for wson packages, the package type zp is not used in the top side marking. 2. package type sn (soic8 150mil) is a special order package, please contact winbond for ordering information. 3. uson package type ux has special top marking due to size limitation. 8 = 8mb; e = w25q series, 1.8v; 0 = standard part; g = green; p = otp enabled.
w25q80bw publication release date: january 26, 2011 - 71 - preliminary - revision a 12. revision history version date page description a 01/26/10 new create preliminary preliminary designation the ?preliminary? designation on a winbond datasheet indicates that the product is not fully characterized. the specifications ar e subject to change and are not guaranteed. winbond or an authorized sales representative should be consulted fo r current information before using this product. trademarks winbond and spiflash are trademarks of winbond electronics corporation. all other marks are the property of their respective owner. important notice winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical impl antation, atomic energy control in struments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, com bustion control instruments, or for other applications intended to support or sustain life. further more, winbond products are not intended for applications wherein failure of winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur. winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify winbond for any damages resulting from such improper use or sales.


▲Up To Search▲   

 
Price & Availability of W25Q80BWSNIG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X